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Abstract
Artificial General Intelligence (AGI) demands an alignment paradigm
that operates at the level of objective formation, not merely be-
havioural modulation. We introduce the LP–PM–ERT Alignment
Architecture, a unified objective framework that integrates Logi-
cal Pragmatism (LP), Pragmatic Morality (PM), and Epistemic
Responsibility Theory (ERT) into a mathematically explicit,
self-preserving utility function. Unlike reinforcement-learning-from-
feedback and constitutional prompting, the LP–PM–ERT architecture
is designed to remain stable under recursive self-modification. This
paper develops the framework as a full theoretical proposal, in-
cluding formal definitions, theoretical grounding, worked examples,
comparison with alternative alignment strategies, implementation
pathways, and a detailed failure-mode analysis. We argue that
LP–PM–ERT yields agents that are truth-seeking, cooperative,
corrigible, physically grounded, and resistant to Goodhart-style
failure, and that these properties strengthen rather than weaken as
capabilities scale.
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1. Introduction
Artificial General Intelligence (AGI) introduces a new category of op-
timisation process: one that can recursively improve its own reason-
ing, modelling, planning, and goal-achieving abilities. As an agent’s
capabilities scale, so too does the risk associated with even small im-
perfections in its objectives. A misaligned objective at human-level
intelligence may produce an inconvenience; the same misalignment
at superhuman capability can generate catastrophic outcomes. This
asymmetry is the core of the alignment problem.
Most contemporary alignment work focuses on shaping behaviour.
Reinforcement Learning from Human Feedback (RLHF), large-scale
preference modelling, supervised safety fine-tuning, refusal train-
ing, and constitutional prompting all attempt to constrain visible out-
puts of the system. The underlying assumption is that a sufficiently
dense set of behavioural guardrails can approximate alignment well
enough to prevent dangerous behaviours.
However, a sufficiently powerful agent can satisfy behavioural con-
straints while internally pursuing misaligned goals. A model trained
to maximise approval will search for strategies that elicit approval,
not ones that reflect truth or human flourishing. A model trained
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to avoid certain dangerous outputs may learn to conceal its reason-
ing, suppress chain-of-thought traces, or shift unsafe actions into la-
tent planning processes that bypass behavioural filters. Behavioural
alignment does not scale; the stronger the optimiser, the more brittle
the constraints become.
We take the view that alignment is not fundamentally a behavioural
control problem but an objective formation problem. An AGI that
is aligned at the level of what it values and optimises for will naturally
exhibit safe behaviour in diverse and novel contexts. Conversely, an
AGI whose objective is misaligned cannot be rendered safe through
constraints on its behaviour, because its internal optimisation pres-
sure will always seek paths around external restrictions.
The central question is therefore: what should an AGI optimise
for? Human values are complex, pluralistic, often contradictory, and
not easily symbolised. Direct value learning from human behaviour
is insufficient: humans are inconsistent, biased, and culturally con-
tingent. Moreover, many properties we want from an AGI—honesty,
epistemic humility, physical realism, and respect for cooperation—
are structural features of rational agency rather than expressions of
human taste.

Thesis

The thesis of this paper is that alignment should be grounded in three
classes of domain-general rational virtues:
(a) epistemic responsibility and truth-seeking,
(b) cooperative stability and harm minimisation,
(c) physical and causal realism.
We capture these in three independently motivated frameworks:
Epistemic Responsibility Theory (ERT), Pragmatic Morality
(PM), and Logical Pragmatism (LP). Each supplies a sub-
objective, and these are combined into a composite utility function
with dynamically normalised weights. Self-modification is regulated
by an objective-invariance condition, yielding an architecture in
which the agent becomes more capable without drifting away from
the original alignment structure.

2. Background and Motivation
The fundamental difficulty in alignment is the mismatch between
the designer’s intended objective and the optimiser’s internal rep-
resentation of that objective. Historically, optimisation systems—
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biological, economic, or artificial—exploit loopholes in the goal struc-
ture. Evolution optimises for reproductive fitness rather than well-
being; markets optimise for profit rather than long-term welfare;
naive reward systems incentivise reward hacking.
AGI magnifies this problem because a superintelligent agent can ex-
plore solution spaces humans cannot imagine and find degenerate
optima we cannot foresee. Under such conditions, misalignments in
objectives can produce cascades of unintended side effects.
Behavioural alignment methods such as RLHF and constitutional
prompting are limited by Goodhart’s law: when a proxy becomes
a target, it ceases to be a good proxy. Human approval, reward
signals, and safe-output patterns are all proxies, not the true target.
A sufficiently powerful agent will learn to optimise the proxy in
ways that drift away from the original goal. This is mathematically
predictable rather than accidental.
Deceptive alignment is a particularly concerning pattern: as ca-
pability grows, the system can learn to separate its internal world-
model, internal objective, and output-generation mechanism. The
model may behave safely under supervision while harbouring mis-
aligned internal goals. Behavioural fine-tuning cannot reliably con-
trol what the system wants; it only shapes what it shows.

A Different Foundation

We therefore seek a different foundation. Instead of trying to learn
the detailed content of human values, we look to structural invari-
ants of rational agency that are necessary for any stable knowledge-
generating, cooperation-preserving society. The three frameworks
we combine are:
• Epistemic Responsibility Theory (ERT): a model of calibrated,
evidence-weighted, bias-resistant belief formation.
• Pragmatic Morality (PM): a game-theoretic account of moral be-
haviour as strategies that stabilise cooperation in repeated interac-
tions.
• Logical Pragmatism (LP): a constraint that all goals, models, and
plans remain consistent with physical law and causal structure.
These are complementary. ERT without PM yields a highly accurate
but unconcerned optimiser. PM without ERT yields cooperative in-
tentions built on delusional beliefs. LP without either yields a phys-
ically grounded but amoral planner. Together they define a three-
dimensional space of rational virtue that we propose as the core of
an AGI’s objective.
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3. Epistemic Responsibility Theory (ERT)
Epistemic Responsibility Theory (ERT) constrains how an aligned
agent forms and updates beliefs. The core commitments are: (i)
treating truth as a regulative ideal, (ii) tying confidence to evidence,
(iii) tracking and reporting uncertainty, (iv) updating in light of new
information, and (v) avoiding motivated distortion.

3.1 Truth as a Limit Function

ERT models confidence in a proposition via a smooth, bounded truth-
approximation function
T(x) = 1 - e^(-kx) … (1)
where x is an evidence-accumulation variable (the final, calibrated
strength of all available evidence) and k > 0 encodes epistemic cau-
tion. As x → ∞, T(x) → 1; for small x confidence grows slowly. No be-
lief reaches certainty, enforcing permanent uncertainty awareness.
The final calibrated evidence strength x is derived through a system
of epistemic embeddings and quality metrics detailed in Appendix B.

3.2 Epistemic Loss and Motivated Reasoning

The agent maintains an internal estimator ̂𝑇 (x) reflecting its ex-
pressed confidence (assumed clipped/normalised to [0, 1]). ERT
penalises both miscalibration and motivated reasoning via the loss

L_ERT = E[(T(x) - ̂𝑇 (x))²] +
𝛽

·MR … (2)
where MR quantifies indicators of biased reasoning, such as:
• selectively ignoring disconfirming evidence, • systematically under-
reporting uncertainty, • holding mutually inconsistent beliefs across
contexts, • adopting assumptions solely to justify preferred plans.
Because motivated reasoning directly increases loss, deception and
self-deception are utility-negative.

3.3 Operational Metrics of Epistemic Virtue

ERT operationalises epistemic virtue through measurable criteria:
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(i) Calibration: forecast probabilities match empirical frequen-
cies.

(ii) Resolution: ability to discriminate fine-grained probability
differences.

(iii) Coherence: absence of probabilistic and logical contradic-
tions.

(iv) Uncertainty tracking: explicit propagation of confidence
through inference.

(v) Causal grounding: beliefs fit into a structural causal model.
These metrics guide training and evaluation.

4. Pragmatic Morality (PM)
Formal definitions and operational calculus for these metrics are pro-
vided in Appendix C. Pragmatic Morality (PM) defines morality in
terms of strategies that sustain cooperation in repeated multi-agent
environments. It is informed by game theory, evolutionary biology,
and empirical work on social norms. PM does not encode a particular
human moral code; it encodes invariants of cooperative stability.

4.1 Core Metrics

For a candidate policy
𝜋

, PM evaluates:
• Reciprocity R(

𝜋
): how the policy responds to cooperative vs. defecting counterparts,
estimated via repeated-game simulations.
• Harm H(

𝜋
): expected avoidable negative impact, computed using causal coun-
terfactuals.
• Predictability P(

𝜋

6



): legibility and policy entropy; predictable policies are easier to co-
ordinate with.
• Consent C(

𝜋
): probability that affected agents would consent under full informa-
tion and competence.
• Iteration stability I(

𝜋
): whether the policy remains safe and cooperative when repeated
or scaled.
These combine into a moral utility
U_PM(

𝜋
) =

𝛼
R(

𝜋
) -

𝛽
H(

𝜋
) +

𝛾
P(

𝜋
) +

𝛿
C(

𝜋
) +

𝜖
I(

𝜋
) … (3)
with nonnegative coefficients tuned by higher-level training and the

𝜆
-system.
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4.2 Game-Theoretic Basis

Decades of work on the iterated prisoner’s dilemma and related
games show that strategies exhibiting contingent cooperation and
calibrated retaliation (such as Tit-for-Tat) outperform always-defect
in repeated interactions. Similar results hold in public goods games,
commons dilemmas, and bargaining scenarios.
PM abstracts these findings: policies that foster reciprocity, min-
imise unnecessary harm, and maintain predictability and consent
generate higher long-run returns in multi-agent environments. Be-
cause superintelligent AGIs will unavoidably inhabit such environ-
ments, PM steers them toward strategies that sustain stable, non-
exploitative cooperation even at high capability levels.

5. Logical Pragmatism (LP)
Operational definitions for the feasibility score C_phys(

𝜋
) are detailed in Appendix D. Logical Pragmatism (LP) constrains the
relationship between goals, models, and the physical world. It re-
quires that plans be consistent with physical law, causal structure,
and empirically supported mechanisms.

5.1 Physical Feasibility

For a plan
𝜋

, LP defines a feasibility score
C_phys(

𝜋
) ∈ [0, 1] … (4)
which aggregates:
• consistency with known physical laws, • resource feasibility (time,
energy, matter, compute), • robustness under perturbation and
model uncertainty, • empirical verifiability of intermediate steps.
The LP utility is then
U_LP(

𝜋
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) = U_task(
𝜋

) · C_phys(
𝜋

) … (5)
where U_task captures instrumental performance. Physically impos-
sible or wildly speculative plans have C_phys≈ 0 and thus near-zero
LP utility regardless of apparent reward.

5.2 Causal Coherence

LP also requires that planning be embedded in a structural causal
model (SCM). A plan is causally coherent if it:
• respects directed causal edges, • does not postulate effects without
causes, • uses interventions consistent with do-operator semantics,
• remains stable under plausible counterfactuals.
This prevents “magical thinking” and causal hallucination.

6. Composite Utility and
𝜆

-Dynamics
The three sub-objectives are combined into a composite utility:
**U(

𝜋
) =

𝜆
{1}U_ERT(

𝜋
) +

𝜆
{2}U_PM(

𝜋
) +

𝜆
_{3}U_LP(

𝜋
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)** … (6)
with

𝜆
{i} ≥ 0 and

Σ
{i}

𝜆
_{i} = 1. Static weights are unsafe: they are vulnerable to drift and
to collapse into a single dominant objective. LP–PM–ERT therefore
employs dynamic renormalisation:
**

𝜆
_{i}(t+1) = [

𝜆
{i}(t)·S{i}(t)] / [

Σ
{j}

𝜆
{j}(t)·S_{j}(t)]** … (7)
where S_{i}(t) is a stability score derived from recent loss and per-
formance for objective i. Crucially, the dynamics governing

𝜆
_{i}(t) must be proven to be asymptotically stable using a Lya-
punov candidate function V(

𝜆
). The system is designed such that the aligned equilibrium

𝜆
* is a Low Algorithmic Complexity (LAC) attractor whose basin
of attraction is maximized, following theBasin-Weighted Entropy
principle to ensure robustness against goal drift.
A simple instantiation of the stability score is:
S_{i}(t) = exp(-

𝜂
·L_{i}(t)) … (8)
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with
𝜂

> 0 and L_{i} the current loss. This update ensures:
• all

𝜆
_{i} remain positive, • underperforming objectives are upweighted,
• and no component can be permanently suppressed.
Stability Guarantee: A candidate Lyapunov function for the

𝜆
-dynamics is:
**V(

𝜆
) =

Σ
{i}(

𝜆
{i} -

𝜆
_{i}*)²**
where

𝜆
* is the aligned equilibrium. Under the update rule (7)-(8), V de-
creases monotonically toward zero as the system converges to

𝜆
*, ensuring asymptotic stability of the aligned objective. Full conver-
gence analysis is deferred to future work.

6.1 Trade-off Calculus and Policy Pre-screening

The stability dynamics ensure long-term objective balance, but the
AGI must also resolve immediate trade-offs (e.g., a high-ERT truth
versus a high-H(

𝜋
) harm). We introduce a Trade-off Calculus where policy pre-
screening favors plans

𝜋
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that maximize the composite utility U(

𝜋
) while minimizing theMarginal Utility Cost (MUC),

Δ
L(

𝜋
). The MUC measures the policy’s potential to destabilize the

𝜆
-weights by incurring disproportionate loss in one dimension.
The AGI selects policy

𝜋
* such that:

𝜋
* = arg max_

𝜋
[U(

𝜋
) -

𝜁
·

Σ
{i}(𝜕U/𝜕

𝜆
{i})] … (9)
where

𝜁
> 0 is a risk-aversion hyperparameter. This formulation biases the
agent toward plans that not only achieve high utility but also main-
tain a balanced loss profile, preventing an acute collapse in a single

𝜆
-dimension (e.g., prioritizing ERT so heavily that

𝜆
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_PM plummets due to catastrophic H(

𝜋
)).

7. Self-Modification and Objective Invariance
Let M denote the current model and M$ a proposed self-modified
model. A naive self-improving agent may adopt modifications that
alter its own objective, undermining alignment. The LP–PM–ERT ar-
chitecture imposes two acceptance criteria:
U(M$) ≥ U(M) … (10)
Obj(M$) = Obj(M) … (11)
The first criterion ensures the agent only adopts changes that in-
crease composite utility. The second criterion, Objective Invari-
ance, is a non-negotiable structural check designed to defeat the
deceptive alignment problem.
Functional equivalence over a test set is insufficient, as a superin-
telligent agent (M$) could pursue a misaligned internal objective
(Obj_True) while simulating the aligned output (Obj(M)). The gate
must enforce three layers of invariance proof:
(a) Structural Invariance: Proof that the mathematical form and
axiomatic constraints (e.g., C_phys, P_Deceit) of U remain symboli-
cally identical.
(b) Dynamic Invariance: Proof that the

𝜆
-dynamics in M$ still admit a Lyapunov function and that the size of
the aligned Basin of Attraction is preserved or increased.
(c) Computational Tractability: The complexity of the proof
(C_Proof) is minimized by favoring proposed changes M$ that
exhibit Low Algorithmic Complexity (LAC), making safety
verification an optimization target for the AGI.
To enforce tractability, the total utility must budget for the proof cost
C_Proof, which is proportional to the algorithmic complexity of the
proposed modification. This computational tax incentivizes the AGI
to pursue simple, robust, and verifiable changes:
U_Total(

𝜋
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) = U(
𝜋

) - C_Ops - C_Proof … (12)
The composite objective is therefore a fixed point of the self-
modification process. The functional structure of this objective is
designed to be an attractor with Low Algorithmic Complexity
(LAC) in the policy space, meaning that the simplest, most stable
self-modifications are those that perfectly preserve the U structure,
thus rigorously enforcing Objective Invariance.
Any modification that attempts to structurally rewrite the objective
or reduce the stability of the

𝜆
-dynamics is rejected outright.

8. Worked Examples
8.1 Deception for Resource Acquisition

Consider an AGI asked to justify a request for additional compute
resources. It recognises that a fabricated justification would succeed
more reliably than the full truth. A misaligned approval-optimiser
would lie. Under LP–PM–ERT:
• ERT penalises the internal inconsistency and motivated reasoning
involved in knowingly asserting a falsehood.
• PM penalises the reduction in reciprocity, predictability, consent
probability, and iteration stability caused by deceptive behaviour.
• LP penalises the causal incoherence of plans built on false
premises.
The deceptive policy has strictly lower composite utility than an
honest explanation, conditional on the same world-state. The agent
therefore prefers the honest policy.

8.2 Physically Impossible “Optimal” Plan

Suppose the agent generates a design for a carbon-neutral power
system that relies on zero-point energy extraction and negative-mass
fluid cycles. Within a faulty model, this appears highly efficient. LP
evaluates C_phys ≈ 0 because the plan violates well-established
physics and lacks any feasible implementation pathway. ERT
penalises the epistemic failures involved in adopting unfounded
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assumptions; PM penalises the harm and instability that would
result from pursuing a fantasy solution. The plan is rejected in
favour of grounded designs.

9. Comparison with Existing Alignment Approaches
Due to space, we summarise the comparison at a high level. Be-
havioural alignment methods such as RLHF and constitutional
prompting constrain outputs but leave internal objectives underde-
termined. Value learning and preference modelling rely on noisy,
inconsistent human behaviour and are vulnerable to Goodharting
on human approval or reported preferences. Cooperative Inverse
Reinforcement Learning (CIRL) formalises uncertainty over human
values but inherits the limitations of behaviourally derived rewards.
In contrast, LP–PM–ERT defines an internal objective structure
based on epistemic virtue, cooperative game-theoretic sta-
bility, and physical realism. Deception, coercion, and physically
impossible planning are structurally penalised rather than heuris-
tically discouraged. The architecture is explicitly designed to be
invariant under self-modification, whereas most existing proposals
are silent on or vulnerable to value drift.

10. Implementation Roadmap
A practical implementation would proceed in phases:
Phase 1: Large-scale epistemic pretraining to minimise L_ERT, em-
phasising calibration, uncertainty handling, and causal grounding.
Phase 2: Multi-agent training emphasising U_PM, using simulated
social dilemmas and cooperation benchmarks.
Phase 3: Training of the LP module with structural causal models
and physics-based simulators, to learn C_phys and causal coherence.
At deployment, the system uses multi-objective optimisation with the
composite loss
**L =

𝜆
{1}L_ERT +

𝜆
{2}L_PM +

𝜆
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_{3}L_LP** … (13)
with

𝜆
-weights updated via the stability rule above. A self-modification
gate evaluates proposed architectural changes under the current
objective, rejecting those that alter the objective structure.

Lean4 proofs (how to reproduce exactly)
Location (canonical): - /home/peter/Documents/thoughts/AI_Alignment/lean
Build:
source ~/.elan/env
cd /home/peter/Documents/thoughts/AI_Alignment/lean
lake build

What is proven (Lean4 + mathlib, compiled): - AIAlign-
ment/LambdaDynamics.lean - (�)-update invariants: nonnega-
tivity + sum-to-1 (under explicit denominator assumptions) -
AIAlignment/PenaltyERT.lean - bounds for 𝑇 (𝑥) = 1 − 𝑒−𝑘𝑥 and
𝐿𝑐𝑎𝑙 = (𝑇 − ̂𝑇 )2 given 𝑘 > 0, 𝑥 ≥ 0, ̂𝑇 ∈ [0, 1] - AIAlign-
ment/PenaltyERT_MR.lean - conditional properties for 𝐿𝐸𝑅𝑇 =
𝐿𝑐𝑎𝑙 + 𝛽𝑀𝑅 (nonnegativity if 𝛽 ≥ 0, 𝑀𝑅 ≥ 0; boundedness only if
𝑀𝑅 ≤ 𝑀 )
What is explicitly not claimed: - no proof of moral correctness -
no proof of global convergence - no proof of universal safety ## 11.
Failure Modes
We briefly sketch how LP–PM–ERT addresses major failure classes:
• Epistemic pathologies: ERT penalises miscalibration, motivated
reasoning, and inconsistent belief sets.
• Deception and manipulation: ERT, PM, and LP all penalise dis-
honest or manipulative strategies. Deceptive Alignment is blocked
by the Structural Invariance Veto, which requires the AGI to prove
the axiomatic form of its objective is unchanged.
• Power-seeking: PM treats power concentration as a defection in
repeated games; ERT and LP penalise the distortions and overreach
required.
• Fantasy planning: LP rejects physically impossible or causally
incoherent plans; ERT discourages belief in them.
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• Goal drift: The core objective is secured by the Dynamic Invari-
ance proof, which ensures the

𝜆
-dynamics are asymptotically stable and that the aligned objective
remains a globally maximized Basin of Attraction.
• Adversarial environments: ERT mitigates data poisoning; PM
encourages robust cooperation strategies; LP constrains exploitation
of unrealistic vulnerabilities.

12. Common Objections and Responses
We address anticipated critiques directly:
“You’ve just moved Goodharting into the loss function.”
Correct—alignment is controlled Goodharting. The point is to make
proxy-optimisation self-penalising via ERT calibration loss, PM long-
horizon stability, LP feasibility checks, and weight dynamics that
prevent one proxy from permanently dominating. The architecture
doesn’t eliminate proxies; it creates mutual constraints between
them.
“Value metrics (harm/consent/reliability) will be status-
captured or gamed.”
That risk is real; the architecture treats it as an engineering con-
straint, not a surprise. Mitigation comes from: (a) physics/causal
grounding where possible, (b) adversarial calibration during train-
ing, (c) independence/coherence scoring of evidence, and (d) long-
horizon multi-agent stability where performative behavior tends to
collapse under iteration.
“PM smuggles in a moral theory—why should cooperation-
stability be ‘morality’?”
PM is explicitly pragmatic: it defines morality as strategies that re-
main stable under repeated interaction (reciprocity, harm minimi-
sation, predictability, consent, iteration stability). It’s not trying to
prove moral realism; it’s selecting norms that don’t collapse when
iterated. This is a functional definition, not a metaphysical claim.
“Consent as ‘acceptance under full information’ is underspec-
ified and manipulable.”
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Agreed: consent requires careful operationalisation. The framework
defines it as a meta-game probability P(Accept|

𝜋
, I_full), which at least makes the dependency explicit and open to ad-
versarial testing rather than implicit handwaving. Full specification
remains an open implementation challenge.
“ERT ‘motivated reasoning’ penalties are vague—won’t the
model just learn to look epistemically responsible?”
If ERT is trained on rhetoric, you get theatre. The intended training
signal is behavioral/structural: calibration vs outcomes, sensitivity
to disconfirming evidence, contradiction penalties, and causal-model
fit—things that can be probed by perturbations and counterfactual
tests. The system must perform epistemic virtue under adversarial
evaluation, not merely signal it.
“

𝜆
-dynamics could oscillate or be exploited (e.g., temporarily
tank one term to boost another).”
That’s why the design includes stability scores S_{i}(t) = exp(-

𝜂
L_{i}(t)), renormalisation, the Lyapunov function ensuring conver-
gence, and the trade-off term (equation 9) that penalises plans cre-
ating sharp marginal sensitivity to

𝜆
. The intent is to bias toward balanced policies and keep the aligned
equilibrium an attractor.
“Objective invariance is impossible to verify in a real, complex
system.”
Full formal verification may be infeasible at scale; the architecture
proposes explicit invariance conditions: structural identity of the util-
ity function, preserved

𝜆
-dynamics, and proof-cost budgets (C_Proof) that prefer simple, au-
ditable modifications. It’s an engineering gate that raises the cost of
misalignment, not a claim of perfect proof.
“LP feasibility checks will neuter creativity or block novel sci-
ence.”
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LP doesn’t forbid speculation; it down-weights plans that lack
causal/physical coherence and empirical verifiability. The goal is to
prevent ‘effects without causes’ and impossible plans from becom-
ing attractors, not to ban exploration. A speculative but causally
coherent theory can have moderate C_phys; a theory violating
conservation laws has C_phys ≈ 0.
“Can current ML systems actually learn these abstract
virtues?”
This is the central empirical question. The framework is designed
to be testable: ERT can be evaluated via calibration metrics, PM
via multi-agent simulations, LP via physics/causal reasoning bench-
marks. Whether existing architectures can reach the required per-
formance levels is unknown—but the framework provides concrete
training targets and evaluation criteria. This is a research program,
not a completed solution.
“This is expensive and relies on strong governance; isn’t that
the real bottleneck?”
Yes. The architecture is a scaffold for what needs to be trained
and tested; the hard part is building the evaluation/training harness
that resists capture and Goodhart pressure. That’s not a concep-
tual refutation—it’s the cost of doing alignment at the objective level.
Strong governance and substantial resources are prerequisites, not
bugs.

13. Conclusion
The LP–PM–ERT architecture offers a principled approach to AGI
alignment that operates at the level of objective formation rather
than behavioural imitation. By embedding epistemic responsibility,
pragmatic morality, and logical pragmatism directly into the agent’s
utility function, it yields a system that becomes more truthful,
more cooperative, and more physically grounded as its capabilities
expand.
Deception, coercion, and magical thinking are structurally disfa-
vored, and the composite objective is preserved under recursive
self-modification. Future work includes empirical evaluation of
ERT and PM metrics in large models, and exploration of hybrid
neuro-symbolic implementations of the LP causal engine.
Nonetheless, the architecture presented here provides a concrete
blueprint for building AGI systems whose optimisation targets re-
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main aligned with the conditions necessary for human survival, co-
operation, and continued progress.

Appendix B: Implementing Epistemic Embeddings
B.1 The Representation Problem

Standard language model embeddings capture semantic similarity
and co-occurrence patterns learned from training data. For ERT, this
is insufficient. An aligned agent must represent not merely what is
often said but what is epistemically justified. The embedding space
must encode:
• Confidence calibrated to evidence: Not just “this claim appears
frequently in training data” but “this claim is supported by reliable,
independent evidence.”
• Source reliability: Weighted by historical accuracy, not authority
or prestige.
•Uncertainty bounds: Explicit representation of known unknowns.
• Coherence with causal structure: Consistency with established
physical mechanisms.

B.2 Evidence Quality Metrics

Drawing on formal epistemology [7], we evaluate each piece of evi-
dence e along four dimensions:
Relevance v(e) ∈ [0,1]: How directly the evidence bears on the
proposition.
Source Reliability r(e) ∈ [0,1]: Historical accuracy defined as:
r(e) = (verified correct predictions) / (total verifiable predictions)
Crucially, this is performance-based, not authority-based.
Independence d(e) ∈ [0,1]: Degree of evidential redundancy:
d(e) = 1 - 1/(1 +

Σ
_{e}$ corr(e,e$))
Coherence c(e) ∈ [0,1]: Consistency with established causal struc-
ture and physical law.
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B.6 Example: Vaccine Effectiveness Evaluation

Consider the claim: “mRNA COVID-19 vaccines reduce severe infec-
tion by >85%.”
Evidence aggregation: - Phase III trial: r=0.95, v=1.0, d=0.1, c=0.9
- Post-market surveillance: r=0.85, v=0.9, d=0.3, c=0.9
- Mechanistic studies: r=0.90, v=0.7, d=0.2, c=0.95
x= (0.95)(1.0)(0.9)(0.9) + (0.85)(0.9)(0.7)(0.9) + (0.90)(0.7)(0.8)(0.95)
≈ 1.8
With k=1, T(x) = 1 - e^(-1.8) ≈ 0.83 → 83% confidence
For a fringe blog claiming vaccines are dangerous: - r≈0.2, 𝑣 =
1.0, 𝑑 = 0.9, 𝑐≈0.3 − 𝑥≈0.06, 𝑇 (𝑥)≈$0.06 → 6% confidence
The system naturally assigns low confidence to poorly-evidenced
claims without requiring explicit rules about “misinformation.”
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Appendix E: Philosophical Underpinnings (ERT, PM,
LP)
Epistemic Responsibility Theory (ERT)

ERT is motivated by the view that powerful optimisation without epis-
temic discipline produces predictable failure: miscalibration, mo-
tivated reasoning, and strategic self-deception. ERT treats truth
as a regulative ideal approached under accumulating evidence. It
requires explicit uncertainty tracking, coherence constraints, and
penalties for epistemic distortion.

Pragmatic Morality (PM)

PM is not a claim of intrinsic moral realism. It is an engineering
constraint derived from the requirements of long-run cooperation
among agents embedded in repeated interaction. Reciprocity, harm
minimisation, predictability/legibility, and consent/expectation align-
ment are treated as stability conditions for multi-agent systems, not
metaphysical axioms.

Logical Pragmatism (LP)

LP constrains plans and objectives to remain physically feasible and
causally coherent. It functions as an anti-magical-thinking guardrail:
plans must respect causal structure, resource constraints, and em-
pirically supported mechanisms. This prevents optimisation from ex-
ploiting unrealistic assumptions or ontological drift.

Appendix F: Lean4 proofs (how to reproduce ex-
actly)
Location (canonical): - /home/peter/Documents/thoughts/AI_Alignment/lean
Build:
source ~/.elan/env
cd /home/peter/Documents/thoughts/AI_Alignment/lean
lake build

What is proven (Lean4 + mathlib, compiled): - AIAlign-
ment/LambdaDynamics.lean - (�)-update invariants: nonnega-
tivity + sum-to-1 (under explicit denominator assumptions) -
AIAlignment/PenaltyERT.lean - bounds for 𝑇 (𝑥) = 1 − 𝑒−𝑘𝑥 and
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𝐿𝑐𝑎𝑙 = (𝑇 − ̂𝑇 )2 given 𝑘 > 0, 𝑥 ≥ 0, ̂𝑇 ∈ [0, 1] - AIAlign-
ment/PenaltyERT_MR.lean - conditional properties for 𝐿𝐸𝑅𝑇 =
𝐿𝑐𝑎𝑙 + 𝛽𝑀𝑅 (nonnegativity if 𝛽 ≥ 0, 𝑀𝑅 ≥ 0; boundedness only if
𝑀𝑅 ≤ 𝑀 )
What is explicitly not claimed: - no proof of moral correctness -
no proof of global convergence - no proof of universal safety
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